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1 Combining many measurements

Suppose we have a set of values without errors. I asked a bunch of people down the pub how many
units of alcohol they drank per week. OK I’m joking - these are just some numbers I made up. But
suppose I have done a survey and nobody gave me any errors on their estimate - lets face it, if I’m
interviewing a bunch of drunks in the pub I wouldn’t trust their errors anyway. The sensible thing
to do is to estimate the uncertainty from the spread of the values we have collected.

Values we can calculate from a set of data:

1.1 Mean

The best estimate of x from a set of measurements.

x̄ =< x >= 1
N

∑N
i=1 xi

This is the best value to describe the quantity X from a set of measurements.

1.2 Median

The value for which half the measurements are below, half are above. ie. order the numbers and
take the middle value. If you have an even number of data values, take the mean of the two central
measurements.

1.3 Mode

The most frequent value. The mode is not necessarily unique, since the same maximum frequency
may be attained at different values. The most ambiguous case occurs in uniform distributions,
wherein all values are equally likely. For samples from a continuous distributions it isn’t really of
use with data in the raw form: (1.654, 1.687, 2.344, 2.346, 9.010) so you would need to histogram
the data and determine the modal bin (see histograms later).
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1.4 Range

The maximum spread of values

xmax − xmin

1.5 Residual

The distance of each measurement to the mean.

r = (xi − x̄)

What is the average of the residuals?
- it is always zero - as we have calculated the mean so that there are values on either side of it.

1
N

∑N
i=1(xi − x̄) = 1

N

∑N
i=1 xi − N

N x̄ = x̄− x̄ = 0

so this average doesn’t tell us much about how spread out the distribution is.

1.6 Root Mean Square - RMS

We are interested in the magnitude of deviation from the mean, not the direction, so we take the
average of the residuals squared.
The RMS describes the spread of values about the mean. We square the values so that deviation
in either direction is positive and things don’t cancel.

σx =
√

1
N

∑N
i=1(xi − x̄)2)

1.7 Standard Deviation

For large N this is ≈ the RMS - replace N with N − 1. This describes the spread of values about
the mean and best represents the 68% probable range of a single measurement, xi.

σx =
√

1
N−1

∑N
i=1(xi − x̄)2)

This is the most useful to describe the spread of a set of measurements.

1.8 Standard Deviation of the mean

The mean value can be strongly affected by 1 or 2 measurements.
eg. 2.2, 2.3, 2.4, 2.3, 2.1
These five values have a mean = 2.3
but if some muppet takes another measurement:
eg. 2.2, 2.3, 2.4, 2.3, 2.1, 86
the mean becomes = 16.2!

The more measurements contributing to the mean, the less sensitive it is to one ridiculous value
like that. Therefore, it is reasonable to assume the uncertainty in the mean is inversely proportional
to N . It is infact described by:
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σx̄ = σx√
N

four times the number of measurements gives half the uncertainty on the mean.

1.9 Full Width Half Maximum

A full width at half maximum (FWHM) is an expression of the extent of a function, f(x), given
by the difference between the two x values at which f(x)is equal to half of its maximum value. see
slide
For the normal distribution

FWHM = 2
√

2 ln 2σ ≈ 2.35482σ

1.10 Skewness

Indicates how asymmetric a distribution is.

S = Mean−Mode
σx

What is the dimensionality of this? No dimensions.
skewness = 0 for a symmetric distribution.
If the distribution is very skewed, the standard deviation may not be a good estimate of the
uncertainty - may need asymmetric errors.

1.11 Summary on assigning uncertainties to repeatable measured quantities

• If you only make one measurement, x with measurement accuracy ∆s (eg. length with a ruler
with mm gradings) quote x± ∆s

2 .

• If you have 2–3 values spreading > ∆s, the range is an indication of the uncertainty. Quote
the mean x̄ = 1

N

∑N
i=1 xi ± xmax−xmin

2 . This uncertainty can be taken as both the error on
the mean and on the single measurement.

• If you have N values with a spread large compared to ∆s, again quote the mean, x̄ =
1
N

∑N
i=1 xi. For the error on a single value quote the standard deviation, σx =

√
1

N−1

∑N
i=1(xi − x̄)2),

but for the error on the mean use ± σx√
N

2 Graphs

Given 2 observables, x and y we often want to know

• What relationship exists between them?

• Parameters of that relationship.
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Example:
Spring displacement, y, vs weight. x. We can take a series of measurements of how much the spring
stretches as we place different weights on it (diagram on board).
What relationship would you expect?
Probably linear relationship - the more weight you put on the more it will stretch. Can test this
by plotting y as a function of x. Slide 1

• Can see if relationship exists by eye - visually see a trend.
Yes it looks linear - but what is going on there?

• Can spot mistakes or features. - eg. One point incorrect, measurement lies way below the
trend.

If you find an anomalous point - CHECK it.

• Check your equipment

• Remeasure

• Take some other measurements close to/around the anomaly.

Slide 2 - first shot at line through data If the trend looks linear - draw a line so that points are
scattered equally above and below. Don’t assume a line goes through the origin. There may
be a strong argument for this to be the case but think carefully. Slide 3 - a better line through data
- but what is going on with last point? Take more data - slide 4 shows that it is trending upwards
there - too much weight breaking the spring?

2.1 Straight line fits

Least squares?

2.2 Gradient

Gradient = ∆y
∆x

To assign an uncertainty use the steepest and flattest lines - this gives you ∆xmax and ∆xmin and
∆ymax and ∆ymin. Draw on board

Take the mean gradient =
∆ymax
∆xmax

+
∆ymin
∆xmin

2 and quote the range/2 = =
∆ymax
∆ymax

−∆ymin
∆xmin

2 as the uncertainty
in it.

Gradient = ∆y
∆x
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3 Making things easier to plot

What if things aren’t linearly related? eg. quadratic. If you know the expected dependency you
can redefine things so you are plotting a straight line.

• Example 1 - pendulm

T = 2π
√

L
g

We want to find g, acceleration due to gravity so we measure the length of the pendulum, L
and the period T . We can rewrite relationship as

T 2 = L4π2

g

So if we plot T 2 against L we should get a straight line with gradient 4π2

g (draw it).

• Example 2 - refractive index

n = A+ B
λ2

we measure n and λ and want to find the constants, A and B - what should we plot?
plot n vs 1

λ2 (draw). This will give a gradient of B and a y-intercept of A.

• Example 3 - radioactive decay

N = N0 exp−
t
λ

Here we would measure the number of decays, which gives us N in a given time, t in an effort
to find the half-life, lambda. Tricky to plot exponentials by hand so we can linearise it by
taking logs:

log10N = log10N0 − t
λ log10 e

We use log10 rather than natural logarithms because we’re human and we like to think in base
10 and use base 10 log-linear graph paper. (need slide). So what is the gradient? (− log10 e

λ )
And the intercept? (log10N0)

• Example 4 - power laws.

V = kI3/2

Again we can take logarithms to make things easier to plot:

log10 V = log10 k + 3
2 log10 I
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3.1 How to plot on log-linear paper

x-axis is normal linear scale but for y axis bold divisions indicate factors of 10. As always - you
need to look at the data you have to plot to decide where to start the axes.
eg. - if our smallest data point is 0.34 and the largest is 5465 we could choose the first point on
this axis to be 0.1 and the last to be 10000 with 5 divisions: 0.1, 1, 10, 100, 1000, 10000.
(Why don’t we start with zero? - log 0 = inf
Now these subdivisions divide the larger scale into 10. So taking between 0.1–1 we have 9 divisions
marked: 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.
So what do we have between 100–1000?
Learning to read off a log scale - show plots of data on log and linear scale.

3.2 The Good News

PhysPlot does this for you - you can easily change the scale linear to logarithmic, you can use it to
fit lines to your data.

4 Histograms

Slide showing Luccio’s data
For the previous examples we had sets of data where we measured one y value for each x value -
so we could easily plot one against the other. What happens if we just measure the same thing a
number of times. For example - I could measure the height of everybody in this room. Then the
ideal way to display the data would be in a histogram.
The trick in plotting histograms is to choose suitable binning - ie the scale on the x-axis. The aim
is to show a smooth distribution/structure.

• If the bins are too wide we lose information

• if the bins are too narrow you don’t see the trend of the data because you are too sensitive
to statistical fluctuations.

4.1 Normalisation

To normalise a histogram you divide the contents of each bin by the total number of measurements,
N. For example, if I took 500 measurements and summed the contents over all the bins in the
histogram I would really expect: ∑nbins

i=1 ni = 500

otherwise something has gone wrong. So I divide every bin by 500 and get:

1
N

∑nbins
i=1 ni = 500

500 = 1

Slide - A good example of plotting data - discuss
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• Title

• Axis labels

• Units

• Axis values

• Sensible scale

• Legend (if more than one set of data shown)

• Error bars
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