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2B29 Electromagnetic Theory 
 
4. Energy in Static Electromagnetic Fields 
 
We will see later that when electromagnetic fields vary rapidly energy can be carried 
away as radiation.  Before we can discuss that we need to establish how static or 
slowly varying electrical systems store energy. 
 
4.1  Electrostatic Energy 
 
It requires energy to establish either electric or magnetic fields.  For the electrostatic 
case the argument is simple, based again on consideration of what is happening inside 

a parallel plate capacitor with gap d, area A and capacitance 0r AC
d

ε ε
=  (equ. (1.14)).   

 
 
 
 
 
 
 
This may be a revision of material from 1B26.  The volume of the dielectric inside the 
capacitor is Adτ = .  If current ( )I t  is flowing when the voltage across the capacitor 
is ( )V t  then the work being done is W IV= .  Integrating this from a situation with no 
charge stored on the capacitor, the stored energy  

is  
2

0 0 2 2

t t dQ Q Q QVS IVdt dt
dt C C

= = = =∫ ∫  (4.1) 

We discussed the size of E and D inside the capacitor in Section 1 just after  equation 
(1.26) 0rε ε=D E .  The size of D depends only on the free charge Q that has come 
onto the plates from the external circuit, /D Q A= , and /E V d= .  So the energy per 
unit volume inside the dielectric is 

 
1 1

22 2e
S QV Q VU DE

A dτ τ
≡ = = = . (4.2) 

This electrostatic energy density inside a linear isotropic dielectric material can be 
generalised to more complicated materials (not proven), as 

 
1 .
2e

dSU
dτ

= = E D . (4.3) 

In vacuum 2
0 / 2e rU Eε ε= . 

I(t)
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4.2  Magnetic Energy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This argument looks very artificial but is actually quite general  We consider an 
isolated region containing a number n of fixed electric circuits.  The ith circuit has a 
battery which is supplying a slowly varying current ( )iI t  and the circuit is threaded 
by a flux ( )i tΦ  due to the combined effect of all the circuits and of fixed pieces of 
magnetisable material in the region.  For the purposes of argument we ignore ohmic 
losses in the circuits with steady currents. 
 
The power coming from the ith battery to maintain the current at time t is 

 ( ) ( ) ( ) ( ) i
i i i i

dP t I t V t I t
dt
Φ

= = watts, (4.4) 

where id
dt
Φ  is the rate of change of flux through the ith circuit which induces the 

voltage Vi that opposes the change (Faraday’s law).  Summing this over all the circuits 
in the region, the total work done by all of the batteries in time tδ  is 

 
1

i n
i

i
i

dW I t
dt

δ δ
=

=

Φ
=∑ , (4.5) 

This is equal to the increase in the stored magnetic energy in the field for the whole 
region. 
 
Now assume that all the currents ( )iI t  are ramped up together at a steady rate over a 

time T to reach maximum values 
imI , with ( ) im

i

I
I t t

T
= .  If the only fluxes present are 

caused by the currents then they will also rise steadily to 
imΦ , with ( ) im

i t t
T
Φ

Φ = . 

Ii

rµ



2b29. Energy in Static Fields  Spring 2004                                                    Section 4 3

Then the energy stored in the whole system will be 

 
0 0

T T
i

i
i

dW W I dt
dt

δ Φ
= =∑∫ ∫   

 2
0

i i

T
m m

i

I
tdt

T
Φ

=∑ ∫   

Integrating this we find that the energy stored in the magnetic field in the whole 
region is 

 
1
2 i im m

i

W I= Φ∑  (4.6) 

We apply this to a special case, a long solenoid with N turns/m wound on a piece of 
magnetisable material (c.f. section 3.3).  Each turn carrying current I can be regarded 
as a fixed circuit. Flux 2r BπΦ =  loops through every turn; 

0 ( )solenoid magnetB B B NI Mµ= + = +  from equation (3.3).   Since H depends only on 
free currents it has the same value in this electromagnet as it had in the solenoid in 

vacuum, 
0

solenoid
B

H NI
µ

= =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is no significant B field in the outside world, except in insignificant volumes 
very close to each end, so all the energy must be stored in the uniform field inside the 
solenoid magnet.  
 
Equation (4.6) can now be rewritten to get the stored energy lW  in length l of this 
magnet, with 

im
lenght l

I NlI=∑  and 2
im r BπΦ = Φ = . 

So 21 1
2 2i il m m

length l

W I N r lIBπ= Φ =∑ . (4.7) 

But 2r lπ  is just the volume of length l of the magnet, and NI H= , so the energy 
density inside the magnetised material is  

 2

1
2

l
m

WU HB
r lπ

= = . (4.8) 

I 

D=2r

l 
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If this is true inside a solenoid there is no reason why it should not be true in all 
materials where B, H (and therefore M) are parallel to one another.   
 

As for the electrostatic energy 
1 .
2eU = E D , equation (4.3) , a more sophisticated argument is 

needed to treat the case where B, H and M are not parallel to one another.  The most general 
result is then (see e.g. Jackson, “Classical Electromagnetism”, Wiley) 

 
1 .
2mU = H B  (4.9) 

 
4.3  Forces due to Magnetic Fields 
 
These are literally what make the modern world work.  We derive the basics.   
 
Consider again the very general system of coils and magnetised stuff discussed in section 4.2 
above.  Using equation (4.9), the total magnetic energy within some volume τ will be 

 
1 .
2m mW U d d

τ τ

τ τ= =∫ ∫H B . (4.10) 

If this is all contained in currents iI  and fluxes iΦ  then equation (4.6) gives 

 
1
2m i i

i

W I= Φ∑ . (4.11) 

If an element of the system moves the fluxes may change.  Let a coil or a piece of 
magnetised material (assumed linear here and in any problems set) move by a 

distance sδ , causing flux changes i
i s

s
δ δ∂Φ
Φ =

∂
 in all circuits. 

 
We assume that the batteries in the circuits supply power to maintain steady currents 

iI  against the transient voltages /i t∂Φ ∂  which will be induced by the flux changes. 
But the motion of an element may also have done external work, and this must also be 
provided by the batteries.  Alternatively, the motion of an element may do work on 
the system and the batteries may receive energy from this (think of charging a battery 
by pedaling a bicycle). 
 

The power coming from the batteries is i
i

i

I
t

∂Φ
∂∑  so the energy from the batteries in 

time tδ  while the movement sδ  happens is 
0

t
i

b i i i
i i

W I dt I
t

δ

δ δ∂Φ
= = Φ

∂∑ ∑∫  (since the 

integrand is perfect derivative).   
So 
 b i i m f

i
W I W Wδ δ δ δ= Φ = +∑  (4.12) 

where we have divided the energy supplied by the battery into the part mWδ  which 
goes into the stored energy of the magnetic field, and the part fWδ  which goes into 
mechanical work by force sF  acting on the element moving sδ  in the direction of the 
force; 
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 f sW F sδ δ=  (4.13) 

But from (4.11) 
1
2m i i

i

W Iδ δ= Φ∑  (4.14) 

since the currents are maintained steady and only the fluxes change.  So, from (4.12) 
and (4.14) 

 
1
2f b m i i m

i

W W W I Wδ δ δ δ δ= − = Φ =∑ . (4.15) 

The work done by the force is exactly half of the work done by the batteries; the rest 
of the energy goes into increasing the stored magnetic field.  [The middleman takes 
½, as always!] 
 
So the force on an element which is free to move in one dimension is just 

 m
s

WF
s

∂
=

∂
. (4.16) 

Or, if the element is allowed to move in three orthogonal dimensions then we can treat 

each separately to get m
x

WF
x

∂
=

∂
 etc., so 

 mW= ∇F  (4.17) 

When the element moves δ s  the work done is .δF s , according to whether the stored 
energy is increasing or decreasing. 
 
(You may be set problems in which a gap s is opened in the yoke of an electromagnet.  
The stored magnetic energy can be calculated as a function of the gap spacing and this 
can be differentiated to get the force exerted by the magnet.) 
 
 
 
 
 
 
 


