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2B29 Electromagnetic Theory 
 
2. Magnetic Materials 
 
2.1 The Magnetic Dipole 
Because there are no magnetic monopoles we have a totally different argument to get 
the distribution of B(r) around a magnetic dipole, but the variation with (r,θ,ϕ) at 
large distances turns out to be identical.   
 
There are two ways of calculating B(r) from a current distribution.  The analagous 
way to what we did for the electric dipole would need us to set up something called 
the magnetic vector potential A(r) – for which there is not enough time to give a 
proper treatment in these lectures (though we mention it again – for the same reason 
as here - when we use an oscillating electric dipole to emit electromagnetic waves: 
section 14 below).  See Grant and Phillips if you are interested.  The tougher direct 
way is to use the Biot-Savart law which you met in 1B26: 
 
 
 
 
 
 
 
 
 
 
 
The contribution dB(r) to the magnetic induction at point r due to current I through 
line element dl at point r' is, according to the Biot Savart Law 
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The basic magnetic dipole can be a loop of current, shown here as a circle of radius 
'r a=  in the yz plane, centred on the origin. 
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The total field ( )= ( )
all d

d∑
l

B r B r , which in this case is an integral around the current 

loop.  Because of the vector product in (2.1) it is very tricky to visualise what is going 
on when we do this integral for the general position r.  Instead we restrict ourselves to 
calculating the field for a point on the x axis. The full derivation for any r can be 
found in textbooks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For any dB due to dl at a particular r' there will also be a dB' at  r due to dl' at -r', that 
is, at the other end of the same diameter of the loop.  The components of dB and dB' 
along the x direction will add, but the components perpendicular to x, in the yz plane, 
will cancel. 
 
In the simple case, where dl is at y a= , 0z = ; i.e. ˆ' a=r j ;   

then 2 2| ' | x a− = +r r  and the x component of ( ')d × −l r r  is, from standard vector 
product rules,   ˆ ˆ( ( ') ( ') )y z z ydl dl dla− − − = +i r r r r i     (2.2) 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
[At this stage of the argument it helps to use the “right hand rule” to make sure you 
agree with the direction of dB.] 
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The non-cancelling contribution to B(r) from this dl (and every other dl around the 
loop) is therefore, from (2.2) in (2.1), 
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This has to be integrated to get the contributions from all the dl around the loop, the 
whole circumference, giving a factor 2 aπ , so 
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The vector area of the loop is 2ˆ aπ=S i , where we take the positive normal to the 
surface as pointing along the direction of advance of a right-hand screw thread when 
rotated in the direction of the current; i.e. advance along the x axis.  So we can define 
the magnetic dipole strength as I≡m S . (2.4) 

Hence
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 (2.5) 

for position r along the x axis at a large distance compared with the size of the current 
loop.  This can be compared with the equivalent E field due to an electric dipole, see 

(1.42) 3 3
0 0

cos ,
2 2r x
m mE E

r x
θ

πε πε
= =  when we go on axis at large distance compared 

with the spacing of charges.  The only difference between the electric and magnetic 
cases is a factor 0 0/µ ε .  Both B and E are proportional to m and fall off like 1/x3. 
 
We could go on to prove from the Biot-Savart law that, at large distances for any 
position r, all components of B(r) for the magnetic dipole are the same as those for 
E(r) from the electric dipole multiplied by 0 0/µ ε ; i.e. following (1.41), (1.42), (1.43) 
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π π
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What we call the “far field” pattern of lines of force is the same for magnetic or 
electric dipoles.  Close to the dipoles, in the “near field” the pattern is different 
because one case is based on a pair of charges displaced along the vector m and the 
other is based on a current loop in the plane perpendicular to m. 
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2.2 Uniformly magnetised cylindrical slab; surface magnetisation current. 
We assumed in section 1.3 above that an electric field E induces in linear dielectric 
material an electric polarisation P, proportional to E,with units of dipole moment per 
unit volume.  Then we interpreted this in terms of polarisation charge density ρP 
which is fixed within the material. 
 
In an analogous way we define the magnetisation M of a linear magnetic medium.  It 
is the magnetic dipole moment per unit volume, and will be proportional to the 
applied magnetic induction B.  Since there are no magnetic monopoles, M must be 
regarded as due to the presence of lots of tiny magnetic dipoles at the atomic or 
molecular level.  Classically these can be thought of as tiny loops of current.  At the 
most fundamental level, in quantum mechanics, these dipoles may actually be 
associated with the magnetic moments of molecules, atoms or even individual 
electrons. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Staying with the classical picture, we can imagine the interior of a cylindrical slab of 
material, area S, thickness t, volume V= St , with uniform magnetisation M, as 
containing a high density of tiny current loops, all packed in side by side.  The 
direction of M is normal to the face of the slab. 
 
The effective B field due to these little loops is the same as that of a dipole magnet 
with magnetic momentV St=M M .   
But if we look closely at a small  
strip ABCD inside the material  
(or  WXYZ), for each current going  
from up to down there will be a  
nearby equal and opposite current  
going from down to up, and for  
each current going from left to right  
there will be a nearby current going  
from right to left.   
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Sensing the field due to these currents from a distance, the internal currents will all 
cancel out their near neighbours (we could use the Biot Savart law to show that).  The 
only places where there are uncancelled currents are around the boundary where the 
currents in the outermost loops are unmatched by external neighbours.  So there is an 
effective surface density jm of “magnetisation current” or “amperian current” which 
represents the effect of the magnetisation.  This is analogous to the surface 
polarisation charge density on the faces of the dielectric inside the capacitor in section 
1.3 above.  We can calculate the size of this effective surface current density because 
we know that its dipole moment is StM .  The current must be flowing around the 
outside of the cylindrical surface of thickness t.  Surface current density jm(r) has the 
dimensions of current/(unit length), so the total current flowing around the slab is 

mI j t= .  From (2.4) therefore StM IS= , so /mj I t M= = .  The vector jm is 
everywhere perpendicular to M. 
 
2.3  Non-uniformly magnetised Material; Volume Magnetisation Current. 
In general M(r) can vary from place to place  
inside a magnetised material, as can B(r).   
Assume that the value of M falls off  
from left to right, so the density of the 
tiny dipoles is reducing as we move to  
the right.  Then in any strip ABCD there  
will be more currents going down on the  
left of the strip than coming up on  
the right of the strip.  So there will  
be a net magnetisation current Jm flowing  
downward. (We use lower case jm  
for surface current density and upper case Jm  
for volume current density.  Look out;  
Grant and Phillips are different.) 
 
 
To make this discussion more rigorous, consider the general case where M has an 
arbitrary direction in a Cartesian system.  Imagine tiny rectangular blocks of material 
with edges lined up along the x, y and z axes.  Their volumes are V x y zδ δ δ= .  The 
first, at position x has component ( )zM x  of magnetisation in the z direction.  This can 
be regarded as due to surface magnetisation currents jm flowing around the four faces 
which contain the z direction, as sketched, where jm.= Mz(x). 
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The second block is displaced by xδ  and has a component ( )zM x xδ+  of 
magnetisation in the z direction.  At their common boundary there will be a surface 
current density in the +y direction equal to 

( ) ( ) ( ) ( ) z
m m z z

Mj x j x x M x M x x x
x

δ δ δ∂
− + = − + = −

∂
.  There are 1/ xδ  such 

boundaries per unit length in the x direction, so the contribution from this term to the 

y component Jmy of the volume current density is zM
x

∂
−

∂
.   

 
Now look at the effect of the variation  
of Mx when we go from the first block  
to a third block sitting in front of the  
first block, displaced by +δz.  In this  
case there will be a surface current  
density in the +y direction on the boundary  
between the first and third blocks equal to  

( ) ( ) ( ) ( ) x
m m x x

Mj z z j z M z z M z z
z

δ δ δ∂
+ − = + − =

∂
 

This contributes xM
z

∂
∂

 to Jmy.  There are only two contributions to Jmy, so we get 

 x z
my

M MJ
z x

∂ ∂ = − ∂ ∂ 
; 

familiar as part of the standard expression for curlM .  Doing a similar exercise with 
the appropriate pairs of elementary blocks for the variations of ( )xM y , ( )yM x , 

( )zM y  and ( )yM z , we finally get a complete vector expression for the volume 
magnetisation current density  

 ˆ ˆ ˆ( ) y yx xz z
m

M MM MM M
y z z x x y

∂ ∂   ∂ ∂∂ ∂ = − + − + − = ∇×    ∂ ∂ ∂ ∂ ∂ ∂    
J r i j k M  (2.7) 

This expression relating magnetisation current density Jm to the variation of 
magnetisation M is the analogue in magnetic materials to expression (1.17) 

pρ = −∇P  which relates polarisation charge ρp to the variation of the polarisation P 
for electrical materials. 
 
2.4  The Magnetic Intensity H(r) 
The argument continues in parallel with that for electrical materials – but because the 
definitions are subtly different for electrical and magnetic quantities the formulae are 
never obvious. 
 
In (1.36) we had 0µ∇× =B J , where the total current density in the medium is 
 ( ) ( ) ( )m f= +J r J r J r  (2.8) 

and the free current Jf corresponds to the motion of free charges like electrons or 
holes in a conductor, or charged particles in a vacuum.  The magnetisation current Jm 
(also called the Amperian current) bears some relation to the currents which might be 

ˆ ( )xM zi

ˆ ( )xM z zδ+i
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flowing at the molecular or atomic level, but it is primarily introduced as a construct 
to help describe the effects of magnetisation.  
 
We can rewrite (1.36) as   
 0 ( )f mµ∇× = +B J J  (2.9) 

and substituting from (2.7) this can be rewritten
0

fµ
 

∇× − = 
 

B M J . (2.10) 

We now define 
0

( )( ) ( )
µ

 
≡ − 
 

B rH r M r  (2.11) 

So (2.10) becomes f∇× =H J . (2.12) 

We can put this back into Stokes’ theorem (from Tools) to get 
 . ( ). .

P P

f
P S S

d d d= ∇× =∫ ∫ ∫H l H S J S , (2.13) 

or if the total free current flowing through area Sp is If  
 . f

P

d I=∫ H l . (2.14) 

We call H(r) the magnetic intensity.  (What are its units?)  It depends directly upon 
the influence of free currents, whereas B(r) depends on both free and magnetisation 
currents; a close parallel to the dependence of D(r).directly on free charge, while E(r) 
depends on both free and polarisation charge.  [Note, in particular situations H can be 
without free currents present, and D nonzero without free charge, even though (1.21), 
(2.12) and (2.14) are satisfied.  You will have some magnetic problems on the sheets 
where this happens.] 
 
Equations (2.12), (2.13) and (2.14) are all versions of Ampere’s law.  We are not yet 
ready to make them part of our set of Maxwell’s equations because there is still 
something missing; see Section 5, below. 
 
In general H, B and M do not have to be parallel to each other.  In a ferromagnetic 
material they are often not parallel to one another – see later in these notes – and their 
sizes are not necessarily proportional to one another. 
 
We can define a magnetic susceptibility mχ  via         mχ=M H . (2.15) 

In linear isotropic materials (not in ferromagnetics) mχ  is a constant of the material.   

Then 
0

mχµ
 

≡ − 
 

BH H , 

or 0 0(1 )m rµ χ µ µ µ= + = =B H H H . (2.16) 

Here µ is the permeability and µr is the relative permeability. (Look out, every book 
defines the symbols mχ , µ and µr slightly differently, though they all agree on the 
concepts.) 
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2.5  Diamagnetic and Paramagnetic Materials 
 

  Susceptibilities of some linear materials at 293K 

MATERIAL SUSCEPTIBILITY χm 

Gold −3.6 × 10−5 
Copper −0.98 × 10−5 
Germanium −1.5 × 10−5 
Tungsten +6.8 × 10−5 
Aluminium +2.3 × 10−5 
Magnesium +1.2 × 10−5 
Glass −1.1 × 10−4 
Fused Quartz −6.2 × 10−5 
Nitrogen (76 cm Hg pressure) −6.7 × 10−9 
Oxygen (76 cm Hg pressure) +1920.0 × 10−9 
Helium (76 cm Hg pressure) −1.05 × 10−9 
Argon (76 cm Hg pressure) −11.0 × 10−9 
Krypton (76 cm Hg pressure) −11.1 × 10−9 
Xenon (76 cm Hg pressure) −24.6 × 10−9 
Water −9.1 × 10−6 
Sodium Chloride −1.38 × 10−5 

 
Note  a) some of these materials have χm>0; some have χm<0. 
And b) χm is always very small for these linear materials,  
     so 1 1r mµ χ= + ≈  (we often use this approximation when 
     magnetic properties are not important; i.e. 0 0rµ µ µ µ= ≈ ) 
 
When χm>0 the material is paramagnetic.  M is parallel to H. 
When χm<0 it is diamagnetic.  M is antiparallel to H. 
In both paramagnetic and diamagnetic linear homogeneous materials equations (2.15) 
and (2.16) apply; i.e. mχ=M H and 0 0(1 )m rµ χ µ µ µ= + = =B H H H . 
 
Crude explanation of diamagnetism at the atomic/molecular level: 
 

• If there are no intrinsic free magnetic moments (e.g. all atoms have closed 
shells so no unpaired electrons) then we can consider the electron orbits semi 
classically; each is like a tiny current loop.   

• With no H field they are all unexcited so there is no net magnetisation M.   
• As H increases B also increases and more flux threads through each loop.   
• By Faraday’s law this induces a voltage around the loop which tends to 

produce a current in the loop that opposes the change of flux.  That is, an 
opposing magnetic moment is produced; χm<0, 0µ<B H .   
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• This mechanism is purely electromagnetic so diamagnetism does not depend 
upon temperature. 

 
Crude explanation of paramagnetism at the atomic/molecular level: 
 

• If there are free, intrinsic, magnetic moments in the atomic structure of the 
material (e.g. unpaired electrons), when no external field is applied they will 
all point in random directions, so M will be zero.  

• As H is increased the dipoles feel a twisting force which tends to align them 
along the direction of H, so χm>0, 0µ>B H .  

• This magnetic ordering is opposed by the random thermal fluctuations in the 
material.  Doing the thermodynamics of this (see textbooks) gives Curie’s law 

 
2
0 0

3m
Nm

kT
µχ =  (2.17) 

where there are N free dipoles of strength m0 per unit volume. T is the 
temperature and k is the Boltzmann constant. 

• Few materials are entirely paramagnetic.  Most materials with paramagnetic 
properties also have some electron orbitals which behave like tiny current 
loops and introduce diamagnetism as well.  So for many nominally 
paramagnetic materials it is more useful to assume 

 
2
0 0

3m dia
Nm

kT
µχ χ= + , 

where χdia<0 is the diamagnetic susceptibility the material would have if there 
had been no free dipoles.   

• At low temperatures the term with χm>0 grows and can dominate, so that some 
materials behave more and more like pure paramagnetics as they get colder. 

 
2.6 Boundary and Continuity Conditions on B and D 
 

From (1.21), in general D satisfies fρ=D∇⋅ , and we can use Gauss’ theorem 

from our tools ˆd d d
V S S

Sτ = ⋅ = ⋅∫ ∫ ∫A A n A S∇ ⋅  to show that . f
S V

d dρ τ=∫ ∫D S  (c.f. 

1.7 and the argument that follows it).  If we are in a region where there are no free 
charges, i.e. 0fρ = , then D will obey the more restricted relations;  

 . 0∇ =D and . 0
S

d =∫D S  (2.18) 

Because there are no monopoles B obeys the same relations (1.28) and (1.27)  
 . 0∇ =B  and . 0

S

d =∫B S  (2.19) 



2b29. Magnetic materials. Spring 2004                                                                Section 2 10

 
Taking D first, let us consider  
the smooth boundary surface  
between two linear dielectric  
media with no free charges at  
the surface.  Draw a tiny closed 
“pill box” which has finite flat 
disc surfaces, area dS, above and  
below the surface and very short  
cylindrical walls connecting the  
two discs. 
 
Let both flat surfaces be parallel to each other with vector areas ˆoutd dS=S n  above 
the surface and ˆind dS= −S n below it.. 

Since . f
S V

d dρ τ=∫ ∫D S = 0 in the absence of free charges, the integral of the flux of D 

out of the surface of the box is zero.  If we let the cylindrical walls be arbitrarily short, 
then there is no significant flux through them, so the net flux out of the box is 
 . . . 0out out in in

S

d d d= + =∫ D S D S D S  

Therefore ˆ ˆ. . 0out indS dS− =D n D n  

So ˆ ˆ. .out in=D n D n  (2.20) 

That is, the component of D perpendicular to the surface has the same value on both 
sides.  This also means that the number of lines of D coming into the surface on one 
side through area dS is equal to the number leaving from the same area on the other 
side; i.e. lines of D are conserved at a boundary with no free charges. 
 
Since the expressions (2.19) for B are identical in form to those (2.18) for D we can use 
the identical argument with the pillbox to show that 
 ˆ ˆ. .out in=B n B n  (2.21) 

at a surface between two magnetic materials – since there can be no monopoles on the 
boundary.  That is, the component of B perpendicular to the surface has the same 
value on both sides and lines of B are always conserved. 
 
 
2.7 Boundary and Continuity Conditions on H and E 

From (1.30) and (1.32), E satisfies . C

C

dd
dt
Φ

= −∫ E l  and d
dt

∇× = −
BE  (2.22) 

while from (2.12) and (2.14) H satisfies f∇× =H J  and . f
P

d I=∫ H l . (2.23) 

In the absence of changing magnetic fields (2.22) becomes 
 . 0

C

d =∫ E l  and 0∇× =E ; (2.24) 

and in the absence of free currents (2.23) becomes 
 . 0

P

d =∫ H l  and 0∇× =H  (2.25) 

n̂  

surface 

Din 

Dout 
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(Remember, C was a closed circuit, P was a closed path.  They are equivalent) 
To get boundary conditions for E 
and H we consider a closed path  
integral ABCD which has vector 
steps AB CD= −  and BC DA= − . 
Now let the steps BC and DA, which 
cut the surface, become arbitrarily  
small so that they make a negligible  
contribution to .

ABCD

d∫ E l . 

But, from (2.24) . . . 0out in
ABCD

d AB CD= + =∫ E l E E  

So . . .out in inAB CD AB= − =E E E . (2.26) 
 
That is, the components of E parallel to the surface are the same above and below the 
surface.  (Since we shrink the area of the loop integral ABCD to zero when we let BC 
and DA become arbitrarily short, there will be no contribution to .

ABCD

d∫ E l  from 

changing magnetic flux.  We could have got (2.26) from (2.22). We set up (2.24) in order 
to make a parallel  argument for E and H.).  Lines of E are not, in general, conserved 
at the boundaries of dielectric materials. 
 
The argument for H follows the same track, starting from (2.25) . 0

ABCD

d =∫ H l  and 

taking the same limit of BC and DA becoming vanishingly small.  We there for get 
(c.f. (2.26)) . . .out in inAB CD AB= − =H H H . (2.27) 

 
That is, the components of H parallel to the surface are the same above and below the 
surface in the absence of free currents flowing in the surface (see step from (2.23) to 
(2.25)).  Amperian or magnetisation currents jm do not alter this boundary condition, so 
it can be applied at the surfaces of magnetised materials.  As for E, lines of H are not, 
in general conserved at a boundary between two regions of different magnetisation. 
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