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2B29 Electromagnetic Theory 
 
1. Introduction;   Reminder of 1B26 
 
1.1  Two Fundamental Fields 
The two fundamental fields E(r) and B(r) are the only ones that matter in a vacuum. 
What are their names? 
 
What are their units? 
 
We can find the dimensions of those units by going back to a fundamental defining 
equation.  For instance, the Lorentz force equation 
 ( ) ( )q= + ×F r E v B  (1.1) 
F is the force on a moving charge with velocity v at position r.  So, for example, the 
dimensions of B in terms of fundamental quantities [mass] = M, [length] = L,  
[time] = T, [charge] = Q will be given by  
 [ ] [ ] /[ ][ ]q=B F v  (1.2) 
so 2 1 1 1[ ] ( ) /MLT QLT MQ T− − − −= =B  (1.3) 
 
1.2  Electrostatics 
Two charges q1 and q2, at rest.  The force between them is given by Coulomb’s law 
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and for a static system with a number of charges, the field due to all the other charges 
at the charge qj, position rj, is 
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where ji i j= −r r r .  We call ε0 the permittivity of free space. 
 
For charges enclosed within a surface S we have Gauss’ law 
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The outward flux of E through S is given by the sum of all the charges within S.  The 
elements dS in the integral are vectors with size equal to a small part of the area S, 
along the local outward normal n̂  to the surface. 
 
If the charges are present as a continuous volume density ρ(r) {what are the units of 
ρ?) 
then we can turn the r.h.s. of (1.6) into an integral over the volume V inside S to get  

E
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0

1.
S V

d dρ τ
ε

=∫ ∫E Sv  (1.7) 

where dτ is an element of volume.  Now we can use Gauss’ divergence theorem from 
our Mathematical Tools, for any vector field A: 
 ˆd d d

V S S

Sτ = ⋅ = ⋅∫ ∫ ∫A A n A Sv v∇ ⋅  (1.8) 

so if we take ( ) ( )=E r A r  then 
0

1d
V V

dτ ρ τ
ε

=∫ ∫∇ ⋅Ε  (1.9) 

But (1.9) must be true for any arbitrary volume V, including a vanishingly small 
volume around a point r, so we can conclude that 

 
0

ρ
ε

=∇ ⋅Ε  (1.10) 

that is, we’ve gone from (1.7), a statement about the flux of E out of the walls of a 
finite volume V, where ρ(r) can vary from place to place, to an equation relating the 
charge density at a point r to the divergence of E(r) at that point.  When the 
divergence of a vector field is related like this to the value of a scalar field ρ(r) at the 
same point, we say that the scalar ρ(r) is the source of E(r).  (1.10) is not yet quite 
what we will remember as one of Maxwell’s equations.   
 
For static E fields we can define an electrostatic potential 

 ) .dφ = ∫
r

o

(r E l  (1.11) 

where o is an arbitrary origin and the line integral dl can be along any arbitrary path.  
This corresponds to the work done against the field in moving unit +ve charge from o 
to r. 
The differential version of this is  φ= −∇E  (1.12) 
where the minus sign represents loss of potential energy if the test charge moves in 
the direction of E.  The potential difference φ(r1) - φ(r2) between points r1 and r2 is 
measured in Volts. 
 
1.3  Electric Fields in Materials 
That is all fine in a vacuum, but what happens when we do electrostatics inside a 
dielectric medium? (We’ll assume a linear medium.  It gets much more complicated 
in the nonlinear case – but that is more important for magnetism, later in these 
lectures.) 
 
Think back to the discussion of capacitors in 1B26.  When we put a slab of a 
dielectric inside a parallel plate capacitor  
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then for the same voltage V across the plates we can store more charge Q.  (N.B. this 
subject needs so many symbols that we can never completely avoid re-using them, 
like V for volume and V for volts.)  That means that the capacitance /C Q V=  goes 
up when the dielectric is inserted.  We call the dimensionless factor by which it 
increases the dielectric constant κ.  The formula relating capacitance to gap spacing d 
and plate area A, in vacuum, is  

 0 AC
d
ε

=  (1.13) 

So when we put the material in it becomes 

 0 AC
d

κε
=  (1.14) 

(If the material were nonlinear, how would that show up in (1.14)?)  
 
What has happened in the material?  For linear materials it is a good model to imagine 
the dielectric being composed of a very large number of tiny electric dipoles, which 
might be identified as individual electrons, which can move a little bit, each tied to its 
positive ion which stays at a fixed place in the lattice of the material. 
 
 
                                                                                              Dielectric Slab in uniform 
                                                                                              E field in vacuum. 
                                                                                                   (dipole sizes much 
                                                                                                     exaggerated) 
 
 
 
 
 
 
 
 
The electrical effects of a dipole can be described in terms of the dipole moment 

q=m l , where there are charges +q and –q at the two ends, with vector l from –ve to 
+ve. 
 
 
 
 
In a linear medium the effect of increasing E will be to increase the displacement of 
each electron from its ion, hence strengthening the dipole moments. When we have 
lots of dipoles crammed into a small region their effects combine to give a dipole 
moment per unit volume which can vary from place to place.  This is the polarisation 
P(r), another vector field.  (What are its units?)  If the E field is uniform, as in a 
parallel plate capacitor, then the dipoles inside the material are uniformly packed and 
P is uniform too.  At the surfaces P falls off rapidly to zero.  . 
 
Following Grant and Phillips (Duffin is equivalent, but not so clear) we can use a 
simple Cartesian coordinate system to discuss the increase of P as E increases. 

- +

- +- +

- +

- +
- +
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Assume a positive x component Px(x) of the polarisation at the plane ABCD.  As E 
increases from zero electrons move out of the volume leaving their positive ions 
behind.  If there are N dipoles per unit volume, each with charge q± and displacement 
a in the x direction, then P Nqa= .  The charge which has crossed surface ABCD as 
this polarization was produced must have been ( )xNqa y z P x y zδ δ δ δ= − , i.e. all 
electrons which started within distance +a from the surface.  If the E field is varying 
from place to place, then Px(x+δx) on the plane EFGH can have a different value from 
Px(x).  Charge ( )xP x x y zδ δ δ− +  enters the cube at this face.  So if the variations of P 
are smooth on a macroscopic scale, and if δx, δy and δz are very small, but much 
bigger than atomic dimensions, the net charge entering the cube across ABCD and 
EFGH is  

 { ( ) ( ) } x
x x

PP x x y z P x y z x y z
x

δ δ δ δ δ δ δ δ∂
− + − = −

∂
 (1.15) 

There can be similar contributions across the faces ABFE and DCGH from variations 
of Pz in the z direction, and across AEHD and BFGC for variations in the y direction.  
So the total charge acquired by the cube due to polarisation is 

 yx zPP P x y z
x y z

δ δ δ
∂ ∂ ∂

− − − ∂ ∂ ∂ 
. (1.16) 

If we divide this by the volume element δxδyδz then there is an effective “polarisation 
charge” density in the material 

 .yx z
p

PP P
x y z

ρ
∂∂ ∂

= − − − = −∇
∂ ∂ ∂

P  (1.17) 

For the slab of dielectric in a parallel plate capacitor, deep inside away from the 
surfaces, E is uniform so P is uniform.  In any tiny cube, as many electrons have 
moved in from one face as have moved out from the other, so the polarisation charge 

z 
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density 0pρ = −∇ =P  there.  The sketched graph under the picture of the slab below 

shows the kind of thing that happens very close to the surfaces.  On the left -ve 
charges can move closer to the surface, but there is nowhere else for the –ve charges 
which were already on the surface to go, so the negative charge piles up there 
producing a locally finite region of negative polarisation charge density.  Something 
similar happens on the right where electrons move out, leaving fixed +ve charge 
behind them.  In the thin surface layers P drops rapidly to zero, so it has nonzero 
divergence and there is a finite value of ρp.  Since the surface layers are so thin we 
often, for convenience, regard the polarisation charge in this case as having only a 
surface density ([ρsurf] = QL-2) at the faces of the slab.  Going back to the argument 
before equation (1.15), the amount of charge that accumulates at a surface ABCD is 

( )xNqa y z P x y zδ δ δ δ= − , so the charge density on a surface ⊥  to the x-direction is 
just xNqa P= .  For a general surface with an outward normal r̂  it is easy to show that 
the surface charge density is ˆP.r . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.4  The Electric Displacement D 
We have now talked about two different kinds of charge density.  In (1.10) the charge 
density 0( )rρ ε= ∇ ⋅Ε  is a combination of the polarisation charge density ρp from 
(1.17), generated by charges tethered to their positions in the material, plus the free 
charge density ρf. due to charges that can move around, like charges in a vacuum or in 

a metal.  So we can write 
0

p fρ ρ
ε
+

=∇ ⋅Ε  (1.18) 

and, using (1.17) 0 0 )f pρ ε ρ ε= = ( P∇ ⋅Ε − ∇ ⋅ Ε +  (1.19) 

E 
ρp 

Length scale 
exaggerated near 
surface of slab. 

- +

- +- +

- +

- +
- +
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Equation (1.19) says that the free charge is equal to the divergence of a quantity 
0 )ε( PΕ + .  It then becomes very convenient to define a new secondary field, the 

electric displacement  0( ) ( ( ) ( ))ε≡D r r P rΕ +  (1.20) 
so that fρ=D∇ ⋅  (1.21) 
We will use this, rather than (1.10), as one of the four Maxwell equations.  It will 
allow us to treat electromagnetic waves in linear media as easily as waves in vacuum. 
 
Intuitively, the thing to remember about the displacement D is its direct relationship to 
free charge.  The electric field strength E is generated by the total charge, including 
free and polarisation charge, as in (1.18). 
 
Tidying up definitions, we go back to the parallel plate capacitor. When we fill it with 
material with dielectric constant κ , holding a fixed stored charge Q on the plates, the 
voltage V across the plates goes down by a factor 1/κ  since C has increased by κ .  
Thus E (=E) inside the material has decreased by 1/κ  because the polarisation 
charges on the two surfaces now screen out some of the free charge Q.  From inside 
the dielectric it seems that the effective charge at each surface is Q-QP, where 

PQ PA=  is the amount of charge that concentrates at each face of the dielectric when 
polarisation P (=P) is produced (c.f. argument before (1.15)).   
 
 
 
 
 
 
 
 
 
We can calculate the flux of E through a Gaussian surface S like a sealed bag 
completely enclosing one plate but cutting through the dielectric.  Assuming E is only 
significant inside the capacitor, and is uniform and perpendicular to the plates, then 
from (1.9) 

 
0 0

. P

S

Q Q Q PAd EA
ε ε
− −

= = =∫ E Sv . (1.22) 

When there is no dielectric 0/vacE A Q ε= .  But vacE Eκ=  

so 0

0

EA PAEA κε
ε
−

=  (1.23) 

and 0 ( 1)P Eε κ= − . (1.24) 
We define the electrical susceptibility of the material to be ( 1)Eχ κ≡ − .  More 
generally, for isotropic linear materials, we can write 
 0 0 ( 1)Eχ ε ε κ= = −P E E . (1.25) 
(What are the dimensions of χE?  Why mention “isotropic and linear”?)   

S 
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Notice that, from (1.20) and (1.25)        
 0 0 0( 1)ε ε κ κε= + − =D E E E  
where κ  is a dimensionless multiplier of the vacuum permittivity 0ε .  That leads us 
to the notation which we will use from now on.  We define the relative permittivity 

rε κ≡ , and the permittivity of a medium 0rε ε ε= , so that  
 0rε ε ε= =D E E . (1.26) 
Now we can also write ( 1)E rχ ε≡ − . 
[Look out.  Some books use ε  to mean our rε ] 
 
If we are looking for an intuitive feeling for D, we see that in the case above where 
we are holding the charge Q constant on the plates of the capacitor: 

a) when there is a vacuum between the plates  
 0 /vacD E Q Aε= = .   

b) when the space is filled with dielectric 
 0 0 0/ /r r vac r vacD E E E Q Aε ε ε ε ε ε= = = = , again. 
So the D field is governed only by the free charge Q on the plates and is unchanged 
when dielectric is inserted, whereas the E field (and hence the voltage across the 
capacitor) is reduced by the presence of dielectric.   
[You will be set a tutorial question to show how easily /D Q A=  comes out from the 
Gaussian integral used at equation (1.22)] 
 
 
1.5  Magnetostatics 
This could be as important and intricate as electrostatics – if we lived in a universe 
containing lots of magnetic monopoles.  But we haven’t found any yet.  Until we do 
we can assume that their density ρM is zero so, by analogy with (1.7) and (1.10) we 
get . 0

S

d =∫B S  (1.27) 

and . 0∇ =B . (1.28) 
This is another Maxwell equation. 
 
 
1.6  Mixing Electricity and Magnetism I.  Faraday’s Law of Induction 
 
 
 
 
 
 
 
 
 
 
 
A conducting circuit C may be intersected by a B field which gives a flux 

V

C 
dl
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 .
C

C
S

dΦ = ∫ B S  (1.29) 

through the surface SC contained by C.  Then the emf induced around the circuit is 

 .C

C

dV d
dt
Φ

= − = ∫ E lv , (1.30) 

integrating over all line elements dl in C.  (Note that this non-zero value for a circuit 
integral of E appears to suggest that the potential in (1.11) is not unique; we could 
increase its value arbitrarily by doing a series of loop integrals.  But section 1.2 was 
concerned only with static electric fields without any changing magnetic fluxes.  
What do we call a field where all loop integrals are zero?) 
 
Stokes’ theorem says (see Tools) ( ). .

CS C

d d∇× =∫ ∫A S A lv .  So from (1.29) and (1.30) 

with ≡A E we get . . ( ).
C c

C

C S S

d dd d d
dt dt
Φ

= − = − = ∇×∫ ∫ ∫E l B S E Sv   

and . ( ).
C cS S

d d d
dt

− = ∇×∫ ∫
B S E S  (1.31) 

We can use this in the same way that we did (1.9).  The circuit C and its contained 
surface SC can be shrunk to an arbitrarily small size about any point r, within which 
region the integrands on either side of (1.31) will have negligible variation, so they 

must be equal;  that is d
dt

∇× = −
BE  (1.32) 

This is another of Maxwell’s equations. 
 
 
1.7  Mixing Electricity and Magnetism II: Ampere’s Law. 
We will get our fourth Maxwell equation  
from Ampere’s law, but we have some more  
theory to develop before that.  For now,  
let’s remind ourselves of the 1B26 version. 
 
For steady current I through a conductor  
surrounded by vacuum we have 
                  0.

P

d Iµ=∫ B lv . (1.33) 

where the closed integration path P completely encloses the conductor.  Or for an 
integration path inside a conducting region with current density J(r) 
 0. .

PP S

d dµ=∫ ∫B l J Sv  (1.34) 

                                                         both (1.33) and (1.34) say that the integral of  
                                                         B/µ0 around a closed loop is equal to the current  
                                                         flowing through the area of the loop. 
 

I 
dl 

P 

J 
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But Stokes’ theorem says      . ( ).
PP S

d d= ∇×∫ ∫B l B Sv  (1.35) 

so 0µ∇× =B J . (1.36) 
by the same kind of argument we used to derive (1.32).  This is an incomplete form of 
the last Maxwell equation. 
 
 
1.8  The Field of a Static Electric Dipole 
(You should understand this argument, but the whole detailed derivation below will 
not be asked for in an examination) 
 
                                                                        Origin at O in centre of dipole, length l 

                                                                       2 2
0

ˆ ˆ
( )

4
q

r rπε
+ −

+ −

 
= − 

 

r rE r . (1.37) 

                                                                        The squares and vectors make this tricky 
to evaluate.  It is easier to use the electrostatic potential 

 
0

1 1( )
4

q
r r

φ
πε + −

 
= − 

 
r . (1.38) 

Can get E(r) via (1.12), φ= −∇E , with 
2± =
lr r ∓  and 2 1 21 (| | )

r
−

±
±

= r . 

But 
2 2 2

2 2 2 2
2

| || | | | cos 1 cos
4 4 4

l l lr rl r
r r

θ θ±

 
= + = + = + 

 

lr r r.l∓ ∓ ∓ . 

So we can do a binomial expansion to get 
1 22 2 3

2 2 3

1 1 11 cos 1 cos .....
4 2

l l l l lX Y
r r r r r r r r

θ θ
−

±

   
= + = ± + + +   

   
∓ . 

Neglecting all higher powers of l/r, we get 2

1 1 cosl
r r r

θ
+ −

 
− 

 
� , if r l>> .  So from 

(1.38) 2 2
0 0

ˆ
( ) cos

4 4
q l

r r
φ θ

πε πε
  = 
 

m.rr � , (1.39) 

with q=m l , as before, and cosmr θ=m.r . 
 
If we point such a dipole along the z axis of a  
spherical polar coordinate system we can  
explicitly calculate the div of the potential φ. 
 
Unit vectors ˆ ˆ ˆ, ,r θ ϕa a a  are in the direction of  
motion of the point of ( , , )r θ ϕ≡r when each  
variable is increased with the other two held  
constant.   
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From Tools  1 1ˆ ˆ ˆ( ) ( )
sinr r r rθ ϕ

φ φ φφ
θ θ ϕ

 ∂ ∂ ∂
= −∇ = − + + ∂ ∂ ∂ 

E r r a a a . (1.40) 

Can also write ˆ ˆ ˆ( ) r rE E Eθ θ ϕ ϕ= + +E r a a a . 

From(1.39) 2
0

cos( )
4
m

r
θφ

πε
r �  so 0φ

ϕ
∂

=
∂

.  Hence 0Eφ = ; (1.41) 

                                  3
0

2 cos
4
m

r r
φ θ

πε
∂

−
∂
� .  Hence 3

0

cos
2r
mE

r
θ

πε
�  (1.42) 

                                  2
0

sin
4
m

r
φ θ
θ πε
∂

−
∂
� .    Hence 3

0

sin
4
mE

rθ
θ

πε
� . (1.43) 

 
1.9 Screening; falloff of field strength with distance 
From (1.42) and (1.43) we see that the E field due to a dipole of given strength m falls 
off like 1/r3 while, from (1.5), the E field due to a single charge of given strength q 
falls off like 1/r2.  At a large distance we say that the two opposite charges in the 
dipole “screen” one another, giving a joint effect which falls off faster than the effect 
of either of the charges on its own.  Another way of looking at it is to say that two 
close charges look more and more like a neutral object as we go further away from 
them. 


