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2B29 Electromagnetic Theory 
 
13. Waveguides (and a little about Transmission Lines) 
 
13.1 The Energy is in the Space 
We saw in section 11 above that when an electromagnetic wave falls on a medium 
with high conductivity 0σ ε ω>>  the size of the reflection coefficient at normal 
incidence is given by equation 
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that is, all of the energy is reflected.  This can be shown to be true at all angles of 
incidence.  We also showed that the disturbance penetrates only a few skin depths 
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= =  into the material; equation (11.7).  For copper at 100 MHz, for 

instance, we saw that 7.1 mδ µ . 
 
So when we come to transmit electromagnetic waves at high frequencies in “captive” 
form through either transmission lines or waveguides, the important energy flow 
occurs in the spaces between the conductors, not in the thin layers of conduction 
inside the conductors themselves. 
 
13.2  Transmission Lines 
(Not on the syllabus, but so important they need a mention.  Ask for a handout if you 
want to know more) 
Over a very wide range of frequencies, from audio (10s to thousands of Hz) to UHF 
TV (~30 MHz) and beyond, we often use transmission lines to transport signals or 
pulses.  They normally have two separate conductors. 
 
Examples: 
 
i)  Co-axial cable.  This has an outer 
conducting sheath and a conducting wire 
core, separated by a cylindrical layer of  
dielectric material. 
 
ii) Stripline.  Parallel conductors on a dielectric 
substrate; on a printed circuit board, for instance 
or on a flexible kaptan ribbon. 
 
iii) Twisted pair.  Two insulated wires twisted 
around one another in a regular helix. 
 
Points to note  

   a) Any transmission line can be shown to have a characteristic impedance (coax 
is often 50Ω or 75Ω, twisted pair ~110Ω -depending on the geometry of the 
conductors and the relative permittivity of the dielectric)  If they are not 
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terminated with a receiver that looks like a resistor equal to the characteristic 
impedance there will be severe reflections of pulses and distortions of signals. 
 
   b) The waves in a transmission line have both their E and B vectors 
perpendicular to the direction of transmission – in a similar way to plane waves in 
free space.  Both are called TEM waves; for Transverse Electrical and Magnetic. 
 
For example in a coaxial cable at some time t there can be a potential difference 

( , )V z t between the inner and outer conductors at a point a distance z from the end 
of the cable. 
 
 
 
 
 
 
 
 
 
 
 
 
This will give rise to a radial E field.  At the same time currents I(z,t) flowing in 
opposite directions in the outer sheath and the inner core give rise to concentric 
lines of B, everywhere perpendicular to E and to the z direction in which the 
signal is transmitted. 
 
c)  Far from the ends of a transmission line the two conductors are equally 
important to the high frequency signal.  One of them – often the sheath of a coax. 
- may be the DC ground connection, but this is not relevant to the high frequency 
signal. 
 

13.3  Simple rectangular Waveguides 
Waveguides and RF cavities have  
only one conductor, for instance a  
rectangular hollow pipe. 
 
Again, we transmit waves in the 
z direction.   
 
The fields inside the guide have to  
satisfy an appropriate set of Maxwell  
equations; assuming they are in air or  
in vacuum so there will be no charge  
density ρ or current density J. 
 
We go back to section 6 and collect 
the simplified equations we need. 
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We assume air or vacuum, so 0
0

and =ε
µ

=
BD E H , so we only need E and B. 

Equation (6.1), Gauss’ law, becomes 
 . 0∇ =E . (13.1) 
Equation (6.2), Faraday’s law , remains 

 
t

∂
∇× = −

∂
BE . (13.2) 

Equation (6.3), “no monopoles, remains 
 . 0∇ =B . (13.3) 
Equation (6.4), Ampere’s law augmented, becomes 
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This is effectively the same simplified set of Maxwell equations we used to derive the 

nondispersive wave equations (6.19) 
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have so far dealt mainly with plane wave solutions to these equations, which are 
required to be TEM by (7.12) 0 0ω× = +k E B .  
 
Putting  such plane wave TEM solutions into the rectangular waveguide gives 
immediate difficulties.  If E0 is vertical 
e.g. in the –y direction, as shown, then if  
it is finite in the middle of the guide it  
will also be finite on the surface of the  
vertical conductors at the edges.  But  
finite E fields parallel to a conducting  
surface will give significant currents in the 
metal, which will cause ohmic dissipation of heat and rapidly damp the waves.  
Remember, in setting up Poynting’s theorem in section 10.1 we noted that the rate of 
dissipation of energy was proportional to J.E.  If the current density J is along the 
direction of E then work is done by E on the moving charges.  This imposes a 
rigorous boundary condition for waves to be transmitted without dissipation inside a 
waveguide.  The component of E(r,t) parallel to any conducting surface must be zero 
at that surface.  This means that simple TEM waves cannot be transmitted in a 
waveguide with a single conductor (why the diagram above is crossed out!). 
 
The classes of wave which can be transmitted in a guide are called 
  TM = Transverse Magnetic 
 and TE = Transverse Electric 
with the implication that for TM the E vector may have both transverse and 
longitudinal components, and for TE the B vector may have both transverse and 
longitudinal components. 

E0 
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13.4  Solving Maxwell’s Equations for TM Waves. 
TM implies 0zB = , but ( , , , ), ( , , , ), ( , , , ), ( , , , )x y z xE x y z t E x y z t E x y z t B x y z t  and 

( , , , )yB x y z t  may be finite.  Start by allowing 

 ( )0 exp 0z z gE E i k z tω= − ≠  (13.5) 

where the guide-wavenumber  2
g

g

k π
λ

= ,  (13.6) 

in contrast with the TEM free space wavenumber  

 0
0

2k
c

π ω
λ

= = . (13.7) 

If the wave is undamped then 0zE  stays constant with z as the wave propagates BUT 
we can allow it to vary according to the lateral position inside the guide.  This enables 
us to satisfy the boundary condition at the surfaces of the conductor. 
 0 ( , ) 0zE x y = ,  for 0 or , 0 orx x a y y b= = = = , (13.8) 

The 2∇  and 
t
∂
∂

 operators in equation (7.3) 
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three components of E, so we get 
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with similar equations for andx yE E . 
 
Putting (13.5) into (13.9) we have 
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which can be rearranged, with cancellation of the propagation factor exp ( )gi k z tω− , 

to get 
2 2
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g z
E E k k E
x y
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+ = −
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 (13.10) 

This equation for 0 ( , )zE x y  has to be solved with the boundary conditions of (13.8).  
It is the equation for the amplitude of standing waves on any 2-dimensional surface, 
for instance the normal vibration modes of a rectangular drumhead.  The solution has 

the form 0 0 sin sinz
l x m yE E
a b
π π   =    

   
 (13.11) 

where l and m are integers and E0 is the peak value of Ez0. 
The higher the value of l or m, 
the more zeros there are as a  
function of x or y in the standing  
wave amplitude.  For TM modes  

or 0l m =  do not satisfy (13.8)  
since for finite E0 they would give  
finite Ez0 at some of the surfaces. 

1l =  

2l =

sin l x
a
π

x 
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Putting (13.11) in (13.10) gives 

 
2 22 2
0

2 2 2
gk kl m

a b π
−

+ = ;  the waveguide equation. (13.12) 

It is a sort of dispersion relation since kg is the wavenumber for propagation along the 

guide and 0k
c
ω

= , so (13.12) can be transformed to relate kg to ω as a dispersion 

relation should: 
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. (13.13) 

Hence 2 22 2 , org
g g g

c k c
k k k
ω ω ωω ∂ ∂

= =
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, so 2
phase groupv v c= , as for the plasma in Case 1 

of section 12.3 above. 
 
Each TMlm solution represents a different mode of propagation in the waveguide.  
Starting from (13.5) and (13.11) we can write 

 ( )0 sin sin expz g
l x m yE E i k z t
a b
π π ω   = −   

   
 (13.14) 

This can be used with Maxwell’s equations (13.1) to (13.4) to get explicit expressions 
for the other nonzero components ( , , , ), ( , , , ), ( , , , )x y xE x y z t E x y z t B x y z t  and 

( , , , )yB x y z t .  E and B are perpendicular at all points and times. 
 
13.5  The Cutoff Frequency and Wavelength 
The waveguide equation (13.12) can be put in terms of wavelengths since for any 

wavenumber k = 2π
λ

,  i.e. 
2 2

2 2 2 2
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We can then define a cutoff wavelength λ
C
 given by 

2 2

2 2 2
C

1 1
4

m
a bλ

 
= + 

 
 so that 

    2 2 2
o C

1 1 1

gλ λ λ
= −           (13.15) 

i.e.  if  λo = λ
C
  then  λg → ∞  and if  λo > λ

C
  then  λg  does not exist and 

propagation down the wave guide cannot occur. Only modes for which  λo < λ
C
  will 

be propagated. 
 
There is an equivalent cutoff frequency  

 
2 2

2 2c
c

c l mc
a b

ν
λ

   = = +   
   

 (13.16) 

below which the guide cannot transmit in the TMlm mode. 
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13.6  TElm Modes of a Rectangular Waveguide. 
By an equivalent strategy to section 13.4 above we can also derive the nonzero 
components ( , , , ), ( , , , ), ( , , , ), ( , , , )x y z xE x y z t E x y z t B x y z t B x y z t  and ( , , , )yB x y z t  of 
the TE waves.  See Grant and Phillips for explicit expressions (with different 
definitions of axes!).  The standing wave patterns in x and y are similar to (13.14), so 
they are also labeled by l and m mode numbers which can be shown to satisfy the 
same waveguide equation (13.12).  There is one important difference.  Either l or m 
may go to zero, but not both.  
 
Since the TElm modes obey the waveguide equation they have the same equations for 
the cutof frequency (13.16) and cutoff wavelength (13.15). 

 
This picture from Grant and Phillips shows the magnetic field lines (solid) in the TE10 
mode at an instant of time when the electric field (shown dotted) is a maximum in the 
+y direction over the plane 0z = .  The maximum reversed electric field is also shown 

on the plane at 2
gz λ

= .  There are finite electric fields at places on the upper and 

lower surfaces, but E is perpendicular to the surface there so the boundary condition 
is satisfied.  The magnetic field lines in this mode have the same shape at all y. 
 
The TE10 or TE01 modes are particularly important because one or the other of them 
has the lowest cutoff frequency of all the TElm and TMlm modes (depending on 
whether a>b or vice versa).  Rectangular waveguides are normally constructed for use 

x 

y 
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with a generator of a particular frequency ν , such that cν ν>  for TE10 (or TE01), but 

cν ν<  for all higher TE and TM modes, including TE01 (or TE10). 
 
For example, radar waves with 1010 10GHz Hzν = = have a free space wavelength of 
30mm.  We may transport them to the dish-aerial through a waveguide with lateral 
dimensions 10 and 20a mm b mm= = .  This has cutoff frequencies given by 

(13.16) 
2 2

2 2c
l mc
a b
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i.e. for TE01, 
2 8

9
3

1 3 10 7.5 10
2 2 2 20 10c

cc Hz
b b

ν −

× = = = = ×  × × 
 

     for TE10    
8

10
3

3 10 1.5 10
2 10 10c Hzν −

×
= = ×

× ×
 

     for TE11 and TM11   
2 2

11 101 1 5 0.167 10 1.67 10
20 40 40c

cc Hzν    = + = = × = ×   
   

. 

     Higher modes have higher cutoff frequencies. 
 
So the input signal can only be transmitted in the TE01 mode. 
 
 
 


