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2B29 Electromagnetic Theory 
 
10. Energy Flow and the Poynting Vector 
 
10.1  Energy Flow and Dissipation  in Waves 
We saw in section 4 that the energy per unit volume stored in an electrostatic field is 
given by the expressions (renumbered here for ease of reference) 

(4.3) 1
2eU = E.D  Joules/m3  (10.1) 

and the energy density in a magnetic field by 

(4.9) 1
2mU = H.B  Joules/m3 (10.2) 

Now we want to think about the way energy moves in an electromagnetic wave; not 
just the plane waves we have been using for the discussion of optics, but any form of 
general electromagnetic wave.  To understand the problem we take a situation in 
which some electromagnetic energy is being taken away from the fields and 
dissipated by a current density J(r,t) flowing in a resistive medium.  The power being 
taken from the field and transferred to the current per unit volume will be J.E .   
 
Note that if J ⊥ E no energy is being transferred since the current will be moving 
along an electric equipotential.  
 
Compare with. a projectile  
moving along a parabolic trajectory  
under a gravitational force ˆmg=F f . 
The rate of transfer of energy  
from the potential energy in the  
field to the kinetic energy of the  
body is v.F .  On the diagram the  
gravitational potential is increasing  
where 1 0<v .F  and is decreasing  
where 3 0>v .F .  When the projectile  
is moving horizontally with velocity 2v  no energy is being transferred because F ⊥ 

2v ; the projectile is moving along a gravitational equipotential.] 
 
Rate of transfer of energy from field to the current in volume τ is, in general, 
 P dτ

τ

τ= ∫ J.E  (10.3) 

In the special case where the current J is caused only by the E field acting upon the 
medium with conductivity σ then 
 2P E dτ

τ

σ τ= ∫  (10.4) 

We now use Maxwell’s equations (6.1) to (6.4)to transform (10.3).  From the Ampere 

law (6.4) 
t

∂
∇× = +

∂
DH J  

F 

v1 

v3 

v2 
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so 
t

∂
= ∇× −

∂
DJ H  

then (10.3) becomes ( ) .d d
tτ τ

τ τ∂ = ∇× − ∂ ∫ ∫
DJ.E E. H E . 

Our mathematical tools tell us that  
 ( ) ( ) ( ). .∇ × = ∇× − ∇×E H H E E. H  

so ( ) ( ). . .d d
tτ τ

τ τ∂ = ∇× −∇ − ∂ ∫ ∫
DJ.E H E E× H E . 

Substituting from the Faraday law (6.2) 
t

∂
∇× = −

∂
BE  we get 

 ( ). . .d d
t tτ τ

τ τ∂ ∂ = − ∇ + + ∂ ∂ ∫ ∫
B DJ.E E× H H E . (10.5) 

In a linear medium and µ ε= =B H D E . We can use that (without a fully general 
proof) to motivate, from (10.1) and (10.2), 

 1.
2 mU

t t t
∂ ∂ ∂

= =
∂ ∂ ∂
BH H.B  

and   1.
2 eU

t t t
∂ ∂ ∂

= =
∂ ∂ ∂
DE E.D . 

Putting these results into (10.5), and rearranging, we get 

 ( ) { }1. . .
2

d d d
tτ τ τ

τ τ τ∂
− ∇ = + +

∂∫ ∫ ∫E× H H B E D J.E  (10.6) 

The two terms on the right hand side represent the rate of increase of the stored 

energy { }1 . .
2

+H B E D  in volume τ added to the rate of dissipation of energy due to 

the work done by the E field on currents J(r,t) in τ.  The left hand side of (10.6) is the 
volume integral of a divergence.   
 
 
10.2  The Poynting Vector and Poynting’s Theorem 
 
We define the Poynting vector ≡N E× H . (10.7) 
 
Then Gauss’ theorem requires that . .

S

d d
τ

τ∇ =∫ ∫N N S , where N.dS is the outward flux 

of N through an element dS of the surface S surrounding volume τ.  
 
Poynting’s theorem asserts that .

S

d∫ N S  over any closed surface S is the rate of flow 

of energy through that surface in the form of electromagnetic waves.  Rewriting 

(10.6) we get { }1. . .
2S

d d d
t τ τ

τ τ∂
− = + +

∂∫ ∫ ∫N S H B E D J.E , (10.8) 

which says that the inward flux of electromagnetic energy into volume τ is equal to 
the sum of the rate of increase of stored energy in the fields plus the rate of ohmic 
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dissipation due to currents driven by the fields.  It is very hard to prove Poynting’s 
theorem in total generality, but the above argument based on (10.8) provides a firm 
basis for accepting it, and using the Poynting vector ( , ) ( , ) ( , )t t t=N r E r × H r  to 
represent the energy flow (watts/m2) at spacetime point ( , )tr  in an electromagnetic 
wave. 
 
For an unbounded plane wave of the usual form 0 exp ( )i tω= −E E k.r  we know from 

(7.12), or (8.8) and (8.9), 
µω

=
k ×EH and 

p

1
v

k εµ
ω
= = .  So the instantaneous energy 

flow in the wave is 

 ( ) ( ) ( ) 2
0 0

ˆ( , ) Re ( , ) Re ( , ) cos ( )t t t tε ω
µ

= × = × × −N r E r H r E k E k.r . 

But ( ) 2
0 0 0

ˆ ˆE× × =E k E k  (convince yourself!) so 

 2 2
0

ˆ( , ) cos ( )t E tε ω
µ

= −N r k k.r . (10.9) 

This is a vector in the direction k̂ of motion of the wavefronts, but it varies with time.  
Often it is more useful to use the time-averaged energy flow 

 2
0

1 ˆ
2

Eε
µ

< >=N k  (10.10) 

[Remember; 2 1cos
2

θ< > =  if the average is taken over a whole number of cycles.] 

Equation (10.10) can be rewritten for complex ( , ), ( , )t tE r H r  as 

 ( )* 21 Re watts /
2

m< >=N E× H  (10.11) 

[You should check for yourself that they are equivalent] 
 
 
10.3  Pressure due to Electromagnetic Waves 
The pressure from a wave can be calculated classically, but we are going to cheat.  
Since Einstein we know about photons, so it is much easier to assume that all 
electromagnetic waves are carried by them – even though in a radio wave (say) the 
individual photons are so feeble and their phases are so coherent that they can be 
described with great precision as if they were blended together into a single entity 
represented by the classical ( , ), ( , )t tE r H r  fields, etc. 
 
We know that photons have invariant mass 0 0m = and energy E hω ν= = .  In 
special relativity 2 2 2 2 4

0E p c m c= + , so the momentum of one photon is 

 E hp
c c

ν
= = . 
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So the momentum carried per unit area per second in a plane electromagnetic wave in 
free space is 

 
 

1
wave i i

i i

Np p h
c c

ν < >
= = =∑ ∑  (10.12) 

where i runs over all photons in the 1 m2 of the wave over a period of 1 second. 
 
If, for example, this wave is totally reflected back at a metallic boundary (next 
section) then the change of momentum per m2 in one second is, from (10.10), 

 2
0 02 Np E

c
ε< >

∆ = = . (10.13) 

This is equal to the pressure on the surface [you should check dimensions!]   
 
If the wave is totally absorbed without reflection then the momentum transfer is 
halved and  

 
2

0 0Pressure
2
EN

c
ε< >

= =  Newtons/m2 (10.14) 

 


