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2B29 Electromagnetic Theory 
 
8. Reflection and Refraction at a plane dielectric Surface 
 
8.1 Snell’s Law and the Law of Reflection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Angle of incidence is α, angle of refraction α′, angle of reflection α′′.  Upper medium 
has refractive index n, lower medium has n′.  Both media are homogeneous and 
isotropic. 
 
Take a beam of incoming plane polarised light to be an Electromagnetic plane wave 
with wave vector k. 
 ( )0( , ) expt i tω= −E r E k.r .  
Assume the outgoing refracted and reflected waves have the same frequency  
 ( )0' , ) 'exp 't i tω= −E (r E k .r  (8.1) 

 ( )0'' , ) ''exp ''t i tω= −E (r E k .r .  
 
[For convenience, we have allowed an arbitrary phase ( , ', ''φ φ φ ) to be absorbed into 
each of the constant amplitudes; i.e. 0 0 0ˆ | | expE iφ=E e , where ê  is a unit vector in 
the direction of 0E  and 0| |E  is the modulus of the complex number 0E ; and similarly 
for 0 'E  and 0 ''E .] 
 
Let a ray intersect the surface between the media at point P at rp.  The vector d 
represents a step away from P within the surface.  The waves at the surface in this 
new position will have vectors 
 ( )( , ) ( , ) expp pt t i+ =E r d E r k.d  

 ( )'( , ) '( , ) exp 'p pt t i+ =E r d E r k .d  (8.2) 

 ( )''( , ) ''( , ) exp ''p pt t i+ =E r d E r k .d  
that is, each wave gets a phase-shift with respect to point P  when we move by d. 
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In order for energy to be conserved and the laws of electromagnetism obeyed, there 
must be boundary conditions (like those in sections 2.6 and 2.7 above) at every point 
rp+d in the surface, relating the values of ( , )p t+E r d , '( , )p t+E r d  and ''( , )p t+E r d .  
We do not need to know these boundary conditions in order to get the first important 
results, though their exact form will be needed later.  For the moment let us assume 
only that there is a linear relationship between the three vectors, e.g. sums or 
differences of their components are equal to one another at all d.  If such a boundary 
condition is satisfied at rp then it will also be satisfied at any d so long as the three 
phase shifts in (8.2) are all the same, i.e.  
 ' ''= =k.d k .d k .d  (8.3) 
First let d1 be perpendicular to k (i.e. invisible in the diagram because pointing 
straight at us).  By definition, k is in the plane of the drawing, so 1 0=k.d , but then 
from (8.3) 1 1' '' 0= =k .d k .d  also, so all three vectors k, k′ and k′′ are coplanar. 
(this need not be true in general – e.g. for anisotropic crystaline materials like quartz). 
 
Now let d2 lie in the plane of k, 'k  and ''k , and take '' 2 /k k π λ= = , since the 
incident and reflected rays are both in the same medium where the wavelength is λ. 
Then 2 2 2' ''= =k.d k .d k .d  
Or ( )sin 'sin ' ''sin '' sin ''k k k kα α α α= = =  (8.4) 
 
This gives us two of the basic laws of optics: 

 
a) ''α α= ; (8.5) 
angle of incidence equals angle of reflection. 
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                                                                     Snell’s Law. 
 
 
8.2 Using the Boundary Conditions to get Fresnel Relations 
The two laws (8.5) and (8.6) are geometrical.  They tell us where the reflected and 
refracted waves go in the usual ideally simplified case of perfect plane waves with 
infinite extent in every lateral direction. (Of course, finite apertures lead to extra 
diffraction effects – which we do not treat here.) 
 
But we would also like to know how much of the energy from the incoming wave is 
refracted into the material, and how much of it is reflected.  To do this we now need 
explicit boundary conditions which relate the oscillating electric and magnetic vectors 
above and below the surface. 
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The answers are different for plane polarised waves with their electric vector =E E  
contained in the plane of the wave vectors k, 'k  and ''k , and waves with 

⊥=E E perpendicular to the plane of k, 'k  and ''k .  We will use the boundary 
conditions on E, B, H and D which were derived in sections 2.6 and 2.7 above, so we 
need to be able to write down the wave expression for the other three vector fields as 
well as E.   
 
If, for instance from (8.1),  ( )0( , ) expt i tω= −E r E k.r  
then from (1.26)  ε=D E  (8.7) 
and D is always parallel to E. 
 
But the associated B and H fields will be perpendicular to the plane of the wave 
vectors because of (7.12) 0 0ω× = +k E B , and the equations that followed it. 

Thus ˆ( , ) ( , )t tµε= ×B r k E r  (8.8) 

here k̂  is the unit vector along the direction of the wavevector k.  Similarly, from 

(2.16) ( , ) ˆ( , ) ( , )tt tε
µ µ

= = ×
B rH r k E r  (8.9) 

When =E E  in the plane of the  
wavevectors, then B and  
H are out of the plane; represented 
on the diagram as a circle.  (In 
this case the right-hand rule says  
that the magnetic vectors are  
are out of the paper, towards us). 
 
 
 
 
 
 
 
 
 
 
(When ⊥=E E , then B and H are in the plane of the wavevectors and the paper.) 
 
From the boundary conditions of section 2.6 we know that, for an interface without 
surface charges or currents,  
 
            components of B and D perpendicular to the surface are conserved.   
 
And from 2.7 we know that  
 
             components of E and H parallel to the surface are conserved. 
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We said above that if equation (8.3) ( ' ''= =k.d k .d k .d ) holds there is no relative 
phase change between the exp ( )i tω−k.r  propagation factors of the three waves 

( , )p t+E r d , '( , )p t+E r d  and ''( , )p t+E r d  as we move around the surface.  So we can 
cancel the propagation factor out and apply the boundary conditions to the vector 
amplitudes 0E  etc.   
 
For instance, taking components of 0E  projected parallel to the surface 
 0 0 0cos ''cos 'cos 'E E Eα α α− =  (8.10) 
where the left hand side represents the sum of the two relevant components of E  
above the surface and the right hand side is the component below the surface. 
The corresponding H fields are given by (8.9).  H is ⊥ to k so it lies entirely in the 
interface between the media, so continuity of the  components of H requires 

 0 0 0
''' '
'

E E Eε ε ε
µ µ µ

+ =  (8.11) 

 
Now we make an approximation which is reasonable for most dielectrics that 

0 0rµ µ µ µ= ; i.e. 1rµ , and in (8.11) we can cancel 'µ µ  from the bottom 

line, giving 0 0 0'' ' 'E E Eε ε ε+ = .  Cancelling 0ε , 0 0 0'' ' 'r r rE E Eε ε ε+ = . 
 
Then from equation (7.16) and nearby arguments  

 
0 0 0v r

p

cn µε ε ε
µ ε ε

= = = .   (8.12) 

So (8.11) becomes  0 0 0'' ' 'nE nE n E+ =  (8.13) 
 
To get a simple relation between the incoming and the reflected amplitudes we 
eliminate 0 'E  by dividing equation (8.10) by (8.13). 
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to be the reflection coefficient for a wave with E(r,t) parallel to the plane of the wave 
vectors.  Then 
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or 

' cos cos '

' cos cos '

n
nr n
n

α α

α α

−
=

+
 (8.15) 

 
 
Now define the transmission coefficient for a wave with E(r,t) parallel to the plane of 

the wave vectors 0

0

'E
t

E
≡ . (8.16) 

Eliminating 0 ''E  between rearranged versions of (8.10) and (8.13) 
 0 0 0cos 'cos ' ''cosE E Eα α α− =  
and 0 0 0' ' ''nE n E nE− = −  

 0 0

0 0

cos 'cos 'cos
' '

E E
n nE n E

α αα −−
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or 'cos cos cos ' cosn t t
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 (8.17) 

 
We can use very similar arguments for waves with the other polarisation ⊥=E E  (In 
this case we actually use the continuity of D and B perpendicular to the interface – do 
it for yourself, or look in textbooks.)  This gives a reflection coefficient  
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≡  (8.18) 
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 (8.19) 

and a transmission coefficient 0
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 2cos
'cos cos '

t n
n

α

α α
⊥ =

+
 (8.21) 

The four equations (8.15), (8.17), (8.19) and (8.21) are called the Fresnel relations.  
(You may be asked to use or manipulate them in examination, but will not be asked 
for a full derivation) 


