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2B29 Electromagnetic Theory.   
 
iii) Some useful Mathematical Tools 
 
VECTORS 
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VECTOR CALCULUS 
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For a function that depends only on the distance r = r = 2 2 2x y z+ + , e.g. as φ(r), F(r), then 
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EXPLICIT FORMS OF THE VECTOR OPERATORS 
 
(a) Cartesian (x, y, z),  volume element dτ = dx dy dz. 
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(b) Cylindrical polar (ρ, φ, z),  volume element dτ = ρ dρ dφ dz. 
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(c) Spherical polar (r, θ, φ),  volume element dτ = r2 sinθ dr  dθ dφ. 
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INTEGRAL RELATIONS 
 
If V is a volume with volume element dτ and S is a closed surface enclosing volume V and having a surface 
element dS and an outward normal n̂  at dS then 
 * ˆd d (Divergence theorem)
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Sτ = ⋅∫ ∫A A n∇ ⋅  

If S is an open surface and C is a contour bounding it with line element d  and the normal n̂  to S is defined by 
the right-hand rule in relation to the sense of a line integral around C then 
 * ˆ( ) d (Stokes's theorem)
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